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Abstract. The synthesis of glucosyl derivatives of 2,3-oxirane-dimethanol has been
accomplished chemo-enzymatically by the use of glycosidases and lipases. High yields using
thermophilic glycosidases coupled to the diastereoselectivity and regioselectivity of lipases lead to
selectively deprotected products, useful materials for further elaboration.
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The study of the selectivity of glycosidase-catalyzed! reactions is of current interest in our laboratory2.
General wide substrate specificity coupled to high yields allowed the synthesis of a series of polyol or masked
polyol glycosides using thermophilic enzymes2a. Further enzymatic (i.e. by lipases) elaboration of peracetylated
derivatives of these products allowed access to natural or unnatural polyol glycosides in greatly enriched or
stereochemically pure forms3. The use of lipases on these products has two advantages, i) diastereoselective and
ii) regioselective hydrolysis of acyl groups in specific positions thus producing specific deprotected materials
useful for further elaboration.
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Table 1. Stereochemical outcome of P. cepacia 3 2
lipase hydrolysis R-O O-R'
— 4 1
R-O _/_\_ O-R Substrate Conversion Time Product Remaining 6: R = Ac, R' = a-Glu-Acy
SRR -H substrate 7:R = Ac, R' = B-Glu-Ac,
h=ns 9 . R)- 8.R=HR a-Glu-Acy
sronecn |0 O% 4 EEOENNY| SRCIRIAUA
3;R=H, R'=B-Glu e e )
' 10; R =Bn, R' =p-NO2Bz
4, R=Ac, R'= a-Glu-Acy 7 43% 10h (2R,35)-9 (25,3R)-7 | 11.R=Bn, R' = H
5; R = Ac, R' = 3-Glu-Ac, 90%d.e. 70%d.e. 12:R=Bn.R' = a-Glu

The preparation of glucosides# of 1 has been achieved by transglycosidation using mesophilic or
thermophilic glycosidases from almond (50 fold molar excess of 1, 20% yield of 3), Sulfolobus solfataricus
(50 or 1002a fold molar excess of 1,43 to 65% yield of 3) and Thermus thermophilus (100 fold molar excess of
1, 70% yield of 4 after acetylation). Using reverse hydrolysis approach3 with 1 as substrate only 30% yield of
3 was recovered. Double bond epoxidations of 4 and § were conducted using standard literature procedures6
(m-CIPBA) and obtaining in each case (83-85% yield) a 1:1 diastereomeric mixture of 6 and 7 which were in
turn subjected to P.cepacia and C. antarctica lipase catalyzed? hydrolysis. Both enzymatic reactions are highly
regioselective in that only the acetyl group of the hydroxymethylene unit of the oxirane ring was cleaved
confirming previuos results obtained with P. fluorescens lipase on glycerol and erythritol p-glucoside.? The
diastereoselectivity of the reaction was monitored on recovered materials, on the hydrolysis products and
confirmed on re-acetylated 8 and 9 by inspection of their IH and 13C NMR spectra’.8. Diastereoselectivity of
the reaction using C. antarctica lipase was not practically useful for both a- and B- glucosides; recovered
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materials after ca. 50% conversion were composed of a 2:1 mixture of starting materials, furthermore both
diastereomers of 8 and 9 were present in the hydrolysis products at the end of reaction. The reactions performed
by the enzyme from P. cepacia were more diastereoselective (Table 1)7. Enzymatic preparation of epoxy-
containing compounds was achieved by hydrolysis or by transesterification of epoxyesters?.10; the ee's varied
with experimental conditions (temperature, PH, chain length of alkyl group, etc.) from 50 to >90%. In this
paper we have reported a simple procedure for the synthesis of carbohydrate containing epoxy-compounds
achieving good regio- and diastereoselectivity. Further manipulations of the free primary alcohol group and
oxirane ring of P. cepacia hydrolysis products and those of their diastereomers (after hydrolysis with C.
antarctica lipase) could be envisaged for obtaining interesting natural products!1.12. It was worth noting that
both a- and B-glucosides gave rise to the same stereochemical outcome leading to products with the (S)-
configuration at position 3 of oxirane ring as also reported for PPL-catalyzed hydrolysis9.10 of the
epoxydibutyrate derivative of 1.
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